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THE LENGTH OF THE LUNAR MONTH

BRADLEY E. SCHAEFER, NASA/Goddard Space Flight Center

L. Introduction o

Many old and modern cultures use lunar calendars. That is, the lunar month is
based on the time interval from the moon passing from one phase around a
complete cycle to return to the same phase. In the Babylonian calendar, the
ancient Jewish calendar, and Islamic calendar, the start of the lunar month was
the time that the thin crescent moon was first sighted after new moon. In the
modern Jewish calendar, the start of the month is associated with a calculation
of the instant of new moon. The Christian date of Easter is based on an

Many studies of lunar or lunisolar calendars depend on a knowledge of the
length of the lunar month. For example, at the recent Third International
Conference on Archaeoastronomy (Oxford 3) in St Andrews, Scotland, several
speakers presented various assumptions and pleas for more information con-
cerning the length of the month. One typical application was an attempt to
associate the twenty-eight lunar lodges used widely throughout Asia with the
number of days that the moon is visible. Another application used by several
speakers was to present tallies of numbers preserved on bones (with dates
ranging from the paleolithic to ¢. 1800 A.D.) and associate the derived numbers
with observations of the lunar cycle. Finally, the application to Islamic
calendrics was discussed.

The traditional answer to questions of the length of the month is that the
mean synodic period of the moon is 29.53 days, so that a month composed of a
whole number of days will be either 29 or 30 days long. But reality is not that
simple. First, the actual time from, say, new moon to New moon can vary from
29.2679 to 29.8376 days.! Second, there are two possible points of view, with the
geocentric phase being a global phenomenon of theoretical existence and the

duration. Fourth, for those calendars based on observation, the presence of
clouds can also prolong some months.

Aside from this traditional answer, the only previous detailed examination of
the length of the lunar month is by Huber.2 He has calculated the month length
with the crescent visibility criterion of Neugebauer® for a large number of
months. Huber finds that the months’ lengths are 29 days (46.94%), 30 days
(53.00%), and 31 days (0.06%), with some long periodicities. However,

0142-7253/92/0017-0032 $2.50 © 1992 Science History Publications Ltd



1992 The Length of the Lunar Month S33

TABLE 1. Lunar months for Meridian Mississippi for 1930-31 (cloudfree conditions).

Year Old Moon, Duration of Young Moon, Duration

No Clouds Dark Period No Clouds of Month

1930 Jan 27 3.5 Jan 30 30
1930 Feb 26 4.5 Mar 1 30
1930 Mar 27 4.5 Mar 31 29
1930 Apr 26 3.5 Apr 29 30
1930 May 26 3.5 May 29 29
1930 Jun 25 2.5 Jun 27 29
1930 Jul 24 2.5 Jul 26 30
1930 Aug 22 3.5 Aug 25 29
1930 Sep 21 2.5 Sep 23 30
1930 Oct 20 3.5 Oct 23 29
1930 Nov 18 3.5 Nov 21 30
1930 Dec 18 3.5 Dec 21 29
1931 Jan 16 3.5 Jan 19 30
1931 Feb 15 3.5 Feb 18 30
1931 Mar 17 3.5 Mar 20 30
1931 Aprl15 4.5 Apr 19 29
1931 May 15 35 May 18 30
1931 Jun 14 3.5 Jun 17 29
1931 Jul 14 2.5 Jul 16 30
1931 Aug 12 3.5 Aug 15 29
1931 Sep 10 3.5 Sep 13 29
1931 Oct 10 2.5 Oct 12 30
1931 Nov 8 3.5 Nov 11 29
1931 Dec 7 35 Dec 10 29
1932 Jan 6 2.5 Jan 8

Neugebauer’s criterion has the serious fault that the seasonal variations in the
extinction coefficients are not taken into account.

In this paper, I will quantify the three effects of the length of the lunar month
for three different locations for six years. I will present histograms of the length
of the lunar month for the conditions of (1) with no clouds, (2) with clouds, and
(3) with clouds and a rule that a month can not be longer than 30 days. I will
also discuss the length of the time when the moon is not visible, the degree by
which months alternate between 29 and 30 days, and the relations between
observations at nearby sites. In addition, I will discuss the accuracy by which
the full moon and quarter moon phases can be measured.

2. Cloudless Conditions

The task of predicting the visibility of the thin lunar crescent is an old one,
dating at least back to the Babylonians. Before modern times, the typical
prediction algorithm merely stated that the moon would be visible if its distance
from the sun (in one or more coordinates) was greater than some threshold
distance. The best of these criteria is that of Fotheringham.* All these algo-
rithms have the great drawback that the entire world is implicitly assumed to
have the exact same atmospheric conditions as those used to construct the
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TaBLE 2. Summary of statistics for cloud free conditions.

Site: Meridian Green Bay Tucson
Month is 29 days 49% 49% 49%
Month is 30 days 51% 51% 51%
Dark period is 2.5 days 36% 27% 49%
Dark period is 3.5 days 56% 46% 48%
Dark period is 4.5 days 8% 27% 3%
Alternating months (1st order) 68% 56% 72%
Alternating months (2nd order) 59% 51% 59%
Alternating months (3rd order) 48% 46% 55%

criterion. This is a poor approximation, as the crescent visibility from the
swamps of Louisiana is greatly more difficult than from the crystal clear skies of
the American Southwest.

To overcome these and other problems, I have developed a prediction
algorithm based on the astronomy, meteorology, and physiology of the
detection process.’ The method employed was to model mathematically every
physical process that affects the moonlight from its reflection to its detection.
The processes modelled include the microscopic and macroscopic shadowing on
the moon, the lunar albedo, the relative positions of the sun, moon, and
horizon, the variation of the extinction coefficient as a function of the date,
latitude, relative humidity, time of year, longitude, and altitude, the variation of
the optical pathlength in the atmosphere for each extinction component, the
atmospheric refraction, the brightness of the twilight sky, and the detection
probability of the human eye for the calculated conditions. The entire algorithm
has been published as a computer program.$

It might be useful to reiterate typical and extreme results from my algorithm.
For typical conditions, the age of the moon when first sighted from a location
can be as young as 20 hours or as old as several days. This age will depend on
the time of year, as during the spring the moon is directly over the sun at sunset
so that the distance the moon must travel from conjunction is minimal, while
during the autumn the moon is usually far to one side of the sun at sunset so
that even though the moon is far from the sun (with a large age) the moon will
set quickly after the sun and be invisible. The age of first visibility will also
depend on the distance of the moon, since at perigee the moon’s angular motion
is greater than at apogee so that the moon will achieve a critical separation from
the sun at a younger age. The age of first visibility will also depend on the
observer’s longitude, in that one observer might spot a marginally visible
crescent yet observers to the east will first see a moon that is one day older.
Danjon’ and Schaefers demonstrate observationally and theoretically that the
crescent is invisible to ground-based visual observers when it is within 7° of the
sun. However, for real conditions this limit is never achieved. The youngest
moon ever (reliably) seen is 15.4 hours by J. Schmidt® with the unaided eye and
13.4 hours by R. Victor for an observation with optical aid.!

My algorithm has undergone tests against extensive sets of observations. A
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total of 201 observations have been collected!' from the astronomical literature
and the algorithm is found to be over 2.3 times more accurate than any other
published algorithm. An additional 51 observations have been recently col-
lected!? from the astronomical literature with the same conclusion. Several
Moonwatches have been organized!* where over 1500 observers throughout
North America reported whether the crescent was sighted or not. These
observations all yield the strong conclusion that the algorithm is a good
predictor of the observations.'

Therefore, it is with confidence that I use the program to calculate the
visibility of the crescent. These calculations were performed for three sites
selected for the high quality of the extinction data available from Reddy.!s The
three sites were Meridian Mississippi, Green Bay Wisconsin, and Tucson
Arizona. The sites were chosen to represent a northern and a southern
temperate latitude as well as good and poor atmospheric clarity. The calcula-
tions were performed for three periods each with two years duration, namely
1930-31, 1935-36, and 1940-41. The distribution was to test for possible
changes throughout the 18.6 year period of the moon’s nodal motion. The early
dates were chosen so as to avoid the heavy modern pollution in the summer for
the American East!6 which is automatically taken into account by the program.

The results of these calculations for Meridian for 1930-31 are presented in
Table 1 as an illustration, while the information for the remaining dates and
sites is not given to save space. This list of dates can be used to construct the
lengths of lunar months on the presumption that clouds do not obscure the
crescent (for examples, see the last column of Table 1). Various relevant
statistical information gleaned from my tables is presented in Table 2.

For me, the most surprising result is that the length of the observed month is
always 29 or 30 days long and is never 28 or 31 days long. The reason for my
expectations of long or short months was that the moon can be first visible as
young as 20 hours (in spring) and as old as several days (in the autumn), so that
a chance juxtaposition of these conditions could lead to long or short months.
The fallacy in my expectations is that the conditions change on a time scale of
much longer than a month; thus, adjacent months have similar lunar distances,
similar lunar ecliptic latitudes, and similar azimuths relative to the sun. So even
though the visibility changes greatly with these parameters, the effects for
adjacent new moons are similar and hence the month length will not be much
affected.

Another result is the almost perfect division between months of 29 and 30 days.
This is a necessary result in the long run as the mean synodic month is almost
exactly halfway between 29 and 30 days. One implication is that a calendar that
alternates months of 29 and 30 days will not have large long-term errors.

The months have a non-random tendency to alternate their lengths between
29 and 30 days. This tendency can be quantified by the first order probability
(P) that any given month length will be followed by a month with a different
length. For the three sites, this probability ranges from 56% to 72%, so the
months do tend to alternate at roughly two-to-one odds. A second order
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statistic can be defined as the probability that two months separated by one
month will have the same length. A third order statistic can be defined as the
probability that two months separated by two months will have different
lengths. The second and third order statistics are much closer to chance (50%)
than is the first order statistic, which implies that the alternating does not have
long-term order. If the alternation of adjacent month lengths were independent,
then the second and third order probabilities should be P2+(1—P)? and
P34 3P(1 — P)? respectively, and this is just as observed. Therefore, I conclude
that there is a distinct tendency for the months to alternate in length, but that no
long-term correlations exist.

The sites were spread out widely across the North American continent, yet all
three sites first saw the crescent on the same day 58% of the time. This shows
that, for the much smaller regions relevant to early cultures or to many modern
nations, it is reasonable to apply one prediction for the entire nation. Of the
cases without unanimity, Meridian, Green Bay, and Tucson were the exception
7%, 19%, and 16% of the time respectively.

The length of the dark period ranges from roughly 2.5 days to 4.5 days. That
1s, a 2.5-day interval counts from the morning of the first day to the evening of
the third day and includes two midnights. The dates of old moon sightings and
the corresponding length of the dark periods during 1930 and 1931 are
tabulated for Meridian Mississippi in Table 1. On no occasion did a dark
interval of 1.5 days occur, although one lunation as viewed from Tucson came
close. (From Tucson, the old crescent was easily visible on the morning of 28
November 1940 and was marginally invisible (R= —0.2 + 0.4, see Schaefer'”) on
the evening of 29 November 1940.) A dark interval of roughly 1.5 days (actually
the record is 1.599 days!8) is possible!® although difficult and requires either
extremely clear skies or optical assistance. The myths that Kepler and Amerigo
Vespucci both saw the young and old Moon on the same day? can only be false.
With a dark period of 2.5 to 4.5 days and a synodic month of 29.5 days, the
length of time that the moon is visible during a lunation is 25 to 27 days.

3. Cloudy Conditions

The statistics quoted in the previous section are relevant for observations made
when the critical nights do not have clouds low on the horizon to obstruct the
view. For many applications, this is the relevant case, as the culture may have
selected values that were obtained when the weather was good. However, for
various applications, the reality of clouds is relevant. For example, when
paleolithic man constructed his tallies, he did not wait for a year free of clouds
on the critical dates. And Islamic calendars must still be constructed without
ignoring the imperfect months.

I have collected statistics on the rate of significant clouds low on the dawn
and dusk twilight sky?! as part of a program of measuring the heliacal rising of
stars. These statistics are for 375 mornings and 410 evenings at ten sites around
the world. These statistics are directly applicable to the case of looking for the
crescent in twilight.
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TABLE 3. Lunar months for Meridian Mississippi for 1930-31 (cloudy conditions).

Year Young Moon with Clouds Young Moon with <30 Day Rule

Date of First Length of  Date of Start Length of

Visibility Month of Month Month
1930 Jan 30 34 Jan 30 30
1930 Mar 4 28 Mar 1 30
1930 Apr 1 31 Mar 31 30
1930 May 2 28 Apr 30 30
1930 May 30 29 May 30 29
1930 Jun 28 29 Jun 28 29
1930 Jul 26 31 Jul 26 30
1930 Aug 26 32 Aug 25 30
1930 Sep 27 28 Sep 24 30
1930 Oct 25 28 Oct 24 29
1930 Nov 22 30 Nov 22 30
1930 Dec 22 30 Dec 22 30
1931 Jan 21 28 Jan 21 28
1931 Feb 18 31 Feb 18 30
1931 Mar 21 29 Mar 20 30
1931 Apr 19 35 Apr 19 30
1931 May 24 26 May 19 30
1931 Jun 19 36 Jun 18 30
1931 Jul 25 24 Jul 18 30
1931 Aug 18 29 Aug 17 30
1931 Sep 16 27 Sep 16 27
1931 Oct 13 32 Oct 13 30
1931 Nov 14 33 Nov 12 30
1931 Dec 17 24 Dec 12 29
1932 Jan 10 Jan 10

I find that an excellent site (like Tucson) has roughly half of the nights clear
enough to be used, while an average site (like Meridian or Green Bay) has a
third of the nights clear enough of clouds to be useable. The fraction of clear
mornings is somewhat larger than the fraction of clear evenings. There is no
indication in the data of seasonal changes, although such effects are known to
exist, for example as the ‘monsoon season’ in Arizona.

The weather is strongly correlated from one day to the next. That is, both
cloudy and clear weather last for durations much longer than one day. This is a
consequence of the several-day travel time for a weather system to pass through
a region. My cloudiness statistics show that any site has a roughly 75%
probability that any given cloudy night will be immediately followed by another
cloudy night. For an excellent site, any given clear night has a roughly 25%
probability of being followed by a cloudy night. For an average site, any
given clear night has a roughly 50% probability of being followed by a cloudy
night.

With this information, it is possible to simulate the weather conditions for
any of the three sites in this study. In detail, I choose the weather for the first
night of a lunation by selecting a random number from zero to one and then
check if it is larger or smaller than the cloudiness probability. If the sky is
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TABLE 4. Summary of month lengths for cloudy conditions.

Site
Month Length Meridian Green Bay Tucson

15 days
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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chosen to be clear, then the moon should be seen. If the first night was cloudy, 1
select a random number from zero to one and then check to see if it is larger or
smaller than the probability that a clear night will follow a cloudy night. This
procedure is repeated until a clear night is obtained, on which the moon is taken
to be visible. Examples of the simulated delays caused by clouds are given in
Table 3 for Meridian Mississippi from 1930 to 1931 (¢f. Table 1).

If a lunar calendar were based purely on the dates for which the moon is first
seen, then the length of the month can vary widely. The extreme cases in this
study are 15 and 45 days. The distribution for the three sites is shown in Table 4.
The rms scatter of the length is 4.0, 5.0, and 2.8 days for Meridian, Green Bay,
and Tucson respectively. If the cloudiness fraction were zero, then the rms
scatter would be 0.5 days.

It is possible for a culture to have some mechanism for avoiding the extremes
caused by clouds. One such mechanism for the Islamic calendar has justifica-
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TABLE 5. Summary of month lengths for cloudy conditions with a 30-day maximum length.

Site
Month Length ~ Meridian  Green Bay  Tucson
26 days 1% 0% 0%
27 4% 3% 1%
28 3% 6% 0%
29 24% 22% 43%
30 68% 69% 56%

tion in the Sahih Muslim chapter no. 2378. For this mechanism, the months
are started on the basis of actual observation, unless it is cloudy, in which case
the new month is started 30 days after the previous month’s start. With this
system, I can calculate the lengths of the month as illustrated in Table 3. The
resulting distribution of month lengths for the three sites is presented in Table 5.
This Islamic method for regulating the calendar turns out to be remarkably
good at avoiding discrepant months. That is, it is rare for a month not to have
either 29 or 30 days, and these months are always short by only from one to
three days.

4. Full Moon

The lunar month need not be defined as from new moon to new moon. Instead,
it could be defined as from full moon to full moon. Times of the full moon are
used in various calendric systems, perhaps the best known being the timing of
Easter in the Christian calendar. Festivals in many cultures (for example, the
Zuni Shalako ceremony??) are tied in to the time of full moon. Many calendars
in use in India and Sri Lanka have the months starting at full moon.

The modern astronomical definition of full moon is the instant when the
geocentric ecliptic longitudes of the sun and moon differ by exactly 180°. As
such, the astronomical full moon is not directly observable. Nevertheless, other
definitions (involving the terminator shape, shading across the surface, the
altitude of the moon at sunset, and the relative azimuth of the moon at sunset)
are available for which direct observations can be made. These more practical
definitions would presumably have been used by early cultures. How accurately
can the instant of full moon be measured by primitive observers?

The accuracy for timing the full moon can be estimated by simple obser-
vations. I have made 32 estimates using only simple methods involving the
naked eye. The rigour of my observations must be characterized as ‘casual’, and
the observing time was always about two minutes, with regard only for that
night’s judgement. These methods include a judgement of whether the moon
was out of round, a judgement of the relative darkness of the two limbs, a
comparison of the altitude of the sun and moon, and a comparison of the
moon’s azimuth with respect to my shadow’s azimuth. I find that, on any one
given night of observation within a day or two of the full moon, the time of full
moon can be reliably estimated with an average error of 8.3 hours. Given that
two minutes of casual watching on one night can establish full moon this
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TABLE 6. Surface brightness along the luminance equator of the near full moon.

Fraction Across Disk

Phase Angle OSR__. O07R_. OSR_, —O05R, —07R_. —09R..
2.5° 8.10 7.52 7.30 7.27 7.47 7.99
5.0° 8.57 7.94 7.70 7.65 7.84 8.36
7.5° 8.80 8.10 7.85 7.76 7.95 8.45
10.0° 8.98 8.20 7.93 7.82 8.00 8.50
12.5° 9.17 8.29 8.00 7.85 8.03 8.52

accurately, a series of careful observations over several nights can undoubtedly
establish the time to a few hours.

The question of full moon timing can also be approached theoretically for
each of the above criteria. First, to a reasonable approximation, the moon will
be visibly out of round when the terminator is significantly inside the limb. The
resolution of the average human eye is 42" for typical lunar surface bright-
nesses.2s Therefore, when the moon is within 17° of the antisun position, the
moon will appear circular. A somewhat more sophisticated analysis (where it is
assumed that the observed edge of the moon is fitted to a circle in a least squares
sense) suggests a 12° limit for the moon appearing circular.

When the moon is near full, one side will appear somewhat darker than the
other, and this will provide a clue to an observer as to the time of full moon. I
have calculated the brightness of the near full moon with the complex equations
of Hapke?$ and the photometric parameters of Helfenstein and Veverka.?”” These
results are presented in Table 6 as surface brightnesses (in magnitudes per unit
solid angle) for six locations along the luminance equator for five phase angles
from 2.5° to 12.5°. Each location is described by its distance from the centre in
units of moon radii, such that positive values are near to the terminator. The
threshold level for the detection of brightness differences is difficult to know,
especially with the albedo variations across the lunar disk. A reasonable
estimate would be 0.3 magnitudes, as appropriate for the comparison of areas
that do not share a sharp boundary. Therefore, the moon will appear to have
symmetrical shading when it is within roughly 7° of the antisolar position.

The time of full moon is when the moon is closest to the antisolar position. In
practice, this position on the sky can be identified to within a degree or so by
looking in the direction of the observer’s shadow at the time of sunset or sunrise.
There will be a one degree bias caused by the refraction on the horizon for both
the sun and moon image. This bias will be opposite in the morning when
compared to the evening. If observations are carried out shortly before or after
sunset, then it is still easy to judge the antisolar position to within a few degrees.
The relative position of the moon and the antisun then allows for a reasonable
estimate of the time of closest approach since the direction and speed of the
moon’s motion is well known to any regular skywatcher. The moon’s mean
sidereal motion is 0.55° per hour, so that a position accurate to several degrees
will yield a time of full moon to within roughly a third of a day.

The various observational cues are expected to yield full moon times to
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significantly better than a day. With multiple cues and multiple measurements,
it should be possible to have an accuracy of well under half a day. Thus, both
theory and observation suggest that a half-day accuracy is easy to get, and
several hour accuracy is possible for the naked eye with no equipment.

5. Quarter Moon

What is the accuracy by which a naked eye observer can estimate the time of the
quarter moon? To a reasonable approximation, the moon will appear as a
quarter moon if its terminator deviates by less than 42" from a straight line.
Simple trigonometry shows that the terminator will be indistinguishable from a
straight line if the moon is within 2.6° of quadrature. Since the moon moves
0.55° per hour on average, the time of the quarter phase should be observable
with an accuracy of roughly 5 hours. Once again, multiple observations should
be able to achieve better accuracy.

I have made 28 observational estimates of the time of the quarter phase. My
technique was crude, in that I used the unaided eye (no straight edge was used)
to look at the moon for roughly one minute. The size of any deviations from a
straight terminator were then translated to a time from the quarter phase purely
by my memory of the night-to-night changes in the terminator shape. I find that
I had an average error of 5.5 hours with a maximum error of 21 hours. This
observational accuracy is in agreement with the theoretical accuracy.

Aristarchus of Samos (c. 310-230 B.C.) derived the relative distance of the sun
and moon from the angle between the sun and moon when the moon appeared at
exactly half phase. He took the sun/moon angle to be 87° at first quarter, so that
the sun would be 19 times farther than the moon. The actual angle is typically
89.85°, a value that cannot be distinguished from 90° by naked-eye observers.

The time of the quarter phase can be determined with a higher accuracy than
that of any other phase. That is, the accuracy for the quarter moon phase is
roughly 5 hours, while the accuracy for the full moon phase is roughly 10 hours
and the accuracy of the first visibility of the crescent phase is quantized to 24
hours. The reason is that the terminator moves across the lunar disk fastest at
the quarter phase, so that differences are noticeable in less time. As such, the
greatest calendrical accuracy can be achieved by a calendar based on the quarter
moon. However, if a culture desires certainty (as opposed to accuracy), then a
calendar based on the first visibility of the lunar crescent would be best since the
quantization of sighting times enforces uniformity. Since the majority of lunar
calendars are based on the crescent phase, I conclude that for most cultures
certainty in calendrics is more important than astronomical accuracy.

REFERENCES
1. F. R. Stephenson and Liu Baolin, “On the length of the synodic month™, The observatory, cxi
(1991), 21-22,

2. P. J. Huber, “Astronomical dating of Babylon I and Ur 11", Occasional papers of the Near -
East, 1 (1982), 107-99.



S42 Bradley E. Schaefer 1992

H W

. P. V. Neugebauer, Astronomische Chronologie (Berlin and Leipzig, 1910).

J. K. Fotheringham, “On the smallest visible phase of the moon”, Monthly notices of the Royal
Astronomical Society, Ixx (1910), 527-31.

5. B. E. Schaefer, “An algorithm for predicting the visibility of the lunar crescent”, in Lunar

(=)}

calendar conference, ed. by 1. Ahmad (Herndon, 1988), XI 1-12; idem, “Visibility of the
lunar crescent’, Quarterly journal of the Royal Astronomical Society, xxix (1988), 511-23.

. B. E. Schaefer, LunarCal, published by Western Research Company, Inc., 2127 E. Speedway,
Suite 209, Tucson AZ 85719 (1990).

7. A. Danjon, “Jeunes et vieilles lunes”, L'astronomie, xlvi (1932), 57-66; idem, *Le croissant

]

10.
1.
12.
13.

14,
15.
16.

17.
18.
19.

20.
21.

22.
23.

24.

25

26
27

lunaire”, ibid., 1 (1936), 57-65.

. B. E. Schaefer, “Length of the lunar crescent”, Quarterly journal of the Royal Astronomical
Society, xxiii (1991), 265-77.

. Fotheringham, op. cit. (ref. 4).

L. Doggett and B. E. Schaefer, “Lunar crescent visibility”, 4stronomical journal, submitted.
Schaefer, “Visibility of the lunar crescent” (ref. 5).

Doggett and Schaefer, op. cit. (ref. 10).

L. E. Doggett, P. K. Seidelmann and B. E. Schaefer, “Moonwatch~July 14, 1988, Sky and
telescope, Ixxvi (1988), 34; L. Doggett and B. E. Schaefer, “Results of the July Moon-
watch”, ibid., Ixxvii (1989), 373-5; idem, “Moonwatch August 217, ibid., Ixxx (1990),
174-5.

Doggett and Schaefer, op. cit. (ref. 10), and op. cit. (ref. 13, 1989).
P. Reddy, 1988, private communication.

R. B. Husar and J. M. Holloway, “The properties and climate of atmospheric haze”, in
Hygroscopic aerosols, ed. by L. H. Ruhnke and A. Deepak (Hampton, 1984), 129-70.

Schaefer, “Visibility of the lunar crescent” (ref. 5).
J. E. Bortle, “April's old and young moon”, Sky and telescope, Ixxx (1990), 215.

Ibid.; S. W. Bieda, “A lunar double whammy”, Sky and telescope, 1xxxi (1991), 5-6; D. Laing,
“More on record moons”, ibid., 573.

J. Ashbrook, “Some very thin lunar crescents”, Sky and telescope, xlii (1971), 78-79; N. T.
Bobrovnikoff, Astronomy before the telescope (Tucson, 1989), 58.

B. E. Schaefer, ““Heliacal rise phenomena”, Archaeoastronomy (supplement to Journal for the
history of astronomy), no. 11 (1986), S19-33.

1. Ahmad, “Lunar Calendar Conference overview”, in Lunar Calendar Conference (ref. 5), 1 1-5.

S. C. McCluskey, “Lunar astronomies of the western Pueblos”, in World archaeoastronomy, ed.
by A. F. Aveni (Cambridge, 1989), 355-64.

Government of India, Report of the Calendar Reform Committee (New Delhi, 1955).

. H. R. Blackwell, “Contrast thresholds of the human eye”, Journal of the Optical Society of
America, xxxvi (1946), 624-43. .

. B. Hapke, *‘Bidirectional reflectance spectroscopy, Icarus, lix (1984), 41~-59.

. P. Helfenstein and J. Veverka, “Photometric properties of lunar terrains derived from Hapke’s
Equation”, ibid., Ixx (1987), 342-57.




